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Abstract. We solve the dynamics of on-line Hebbian learning in large perceptrons exactly, for
the regime where the size of the training set scales linearly with the number of inputs. We consider
both noiseless and noisy teachers. Our calculation cannot be extended to non-Hebbian rules, but
the solution provides a convenient and welcome benchmark with which to test more general and
advanced theories for solving the dynamics of learning with restricted training sets.

1. Introduction

Considerable progress has been made in understanding the dynamics of on-line learning
in layered artificial neural networks through the application of the methods of statistical
mechanics; see e.g. [1–3]. For an excellent review of the state-of-the-art in the field, we
refer the reader to the workshop proceedings [4], where a large number of references to earlier
work can also be found; the special case of binary perceptrons has been surveyed in detail
in [5]. For the most part, theoretical work has concentrated on systems where the training set
is much larger than the number of weight updates. In such circumstances the probability that
any given question will be repeated during the training process is negligible and it is possible
to assume for large networks, via the central limit theorem, that their local field distribution
is always Gaussian. In this paper we considerrestricted training sets; we suppose that the
sizep of the training set scales linearly withN , the number of inputs. As a consequence the
probability that a question will reappear during the training process is no longer negligible, the
assumption that the local fields have Gaussian distributions is not tenable, and it is clear that
correlations will develop between the weights and the questions in the training set as training
progresses. In fact, the non-Gaussian character of the local fields should be apredictionof
any satisfactory theory of learning with restricted training sets, as this is clearly demanded by
numerical simulations.

Several authors [6–11] have discussed learning with restricted training sets but constructing
a general theory is difficult. A simple model of learning with restricted training sets which
can be solvedexactlyis therefore particularly attractive and provides a yardstick against which
more difficult and sophisticated general theories can, in due course, be tested and compared.
We show how this can be accomplished for on-line Hebbian learning in perceptrons with
restricted training sets and we obtain exact solutions for the generalization error, the training
error and the field distribution for a class of noisy teacher networks and student networks with
arbitrary weight decay. We work out in detail the two particular but representative cases of
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output noise and Gaussian weight noise. Our theory is found to be in excellent agreement with
numerical simulations and our predictions for the probability density of the student field are a
striking confirmation of them, making it clear that we are indeed dealing with local fields which
are non-Gaussian. An outline of our results is to appear in the conference proceedings [12].

2. Definitions and explicit microscopic expressions

We study on-line learning in a student perceptronS, which tries to learn a task defined by a
noisy teacher perceptronT . The student input–output mapping is specified by a weight vector
J according to

S : {−1, 1}N → {−1, 1} S(ξ) = sgn[J · ξ].
For a givenJ , this is a deterministic mapping from binary inputs to binary outputs. The teacher
outputT (ξ), on the other hand, is stochastic. In its most general form, it is determined by the
probabilitiesP(T = ±1|ξ). These are related to theaverageteacher outputT (ξ) for a given
inputξ by

P(T = ±1|ξ) = 1
2[1± T (ξ)] or P(T |ξ) = 1

2[1 + T T (ξ)]. (1)

To ensure that this noisy teacher mapping can be thought of as the corrupted output of an
underlying ‘clean’ perceptron with weightsB∗, we make the mild assumption that the average
teacher output can be written in the form

T (ξ) = τ(y) y = B∗ · ξ (2)

with some functionτ(y). In other words, the noise process preserves, on average, the
perceptron structure of the teacher. The uncorrupted teacher weight vector is taken to be
normalized such that(B∗)2 = 1, with each componentB∗i of O(N− 1

2 ). We also assume that
inputs are sampled randomly from a uniform distribution† on{−1, 1}N . Typical values of the
(uncorrupted) ‘teacher field’y are then ofO(1); in the thermodynamic limitN →∞ that we
are interested in,y is Gaussian with zero mean and unit variance.

The class of noise processes allowed by (2) is quite large and includes the standard cases
of output noise and Gaussian weight noise that are often discussed in the literature. For output
noise, the sign of the clean teacher output sgn(y) is inverted with probabilityλ, i.e.,

P(T |ξ) = (1− λ)θ(T y) + λθ(−Ty) τ(y) = (1− 2λ) sgn(y). (3)

For Gaussian weight noise, the teacher output is produced from a corrupted teacher weight
vectorB. The corrupted weightsB differ from B∗ by the addition of Gaussian noise of
standard deviation6/

√
N to each component, i.e.,

P(B) =
[

N

2π62

]N/2
exp

(
− N

262
(B −B∗)2

)
. (4)

The scaling withN here is chosen to get a sensible result in the thermodynamic limit (corrupted
and clean weights clearly need to be of the same order). The corrupted teacher field is then
z = B · ξ = y +1, with1 a Gaussian random variable with zero mean and variance62, and
hence

τ(y) = 〈sgn(y +1)〉1 = erf(y/
√

26). (5)

† This choice of input distribution is not critical. In fact, any other distribution with〈ξi〉 = 0 and〈ξiξj 〉 = δij will
give results identical to the ones for the present case in the limitN → ∞. Examples would be real-valued inputs
with either a Gaussian distribution with zero mean and unit variance for each component, or a uniform distribution
over the hypersphereξ2 = N . Likewise, we only actually require that assumption (2) should hold with probability
one (i.e. for almost all inputs) in the limitN →∞.
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In the numerical examples presented later, we focus on the above two noise models. But
our analytical treatment applies to any teacher that is compatible with the assumption (2).
This covers, for example, the more complex cases of ‘reversed wedge’ teachers (where
τ(y) = sgn(y) for |y| > d andτ(y) = − sgn(y) otherwise,d being the wedge ‘thickness’)
and noisy generalizations of these.

Our learning rule will be the on-line Hebbian rule, i.e.

J(` + 1) =
(
1− γ

N

)
J(`) +

η

N
ξµ(`)T µ(`) (6)

where the non-negative parametersγ and η are the weight decay and the learning rate,
respectively. Learning starts from an initial set of student weightsJ0 ≡ J(0), for which
we assume (as for the teacher weights) thatJi(0) = O(N− 1

2 ). At each iteration step̀ a
training example, comprising an input vectorξµ(`) and the corresponding teacher outputT µ(`),
is picked at random (with replacement) from thetraining setD. This training set consists of
p = αN examples,D = {(ξµ, T µ), µ = 1, . . . , p}; it remains unchanged throughout the
learning process. Each training input vectorξµ is assumed to be randomly drawn from{−1, 1}N
(independently of other training inputs, and ofJ0 andB∗), and the outputT µ = T (ξµ)provided
by the noisy teacher. We call this kind of scenario ‘consistent noise’: To each training input
corresponds a single output value which is produced by the teacher once and for all before
learning begins; the teacher isnot asked to produce new noisy outputs each time a training
input is selected for a weight update.

There are two sources of randomness in the above scenario. First of all there is the random
realization of the ‘path’(µ(0), µ(1), µ(`), . . .). This is simply the dynamic randomness of the
stochastic process that gives the evolution of the vectorJ ; it arises from the random selection of
examples from the training set. Averages over this process will be denoted as〈. . .〉. Secondly
there is the randomness in the composition of the training set. We will write averages over all
training sets as〈. . .〉sets. We note that

〈f (ξµ(`), T µ(`))〉 = 1

p

p∑
µ=1

f (ξµ, T µ) (for all `)

and that averages over all possible realizations of the training set are given by

〈f [(ξ1,B1), (ξ2,B2), . . . , (ξp,Bp)]〉sets=
∑
ξ1

∑
ξ2

. . .
∑
ξp

(
1

2N

)p

×
∑

T 1,...,T p=±1

[ p∏
µ=1

P(T µ|ξµ)
]
f [(ξ1,B1), (ξ2,B2), . . . , (ξp,Bp)]

whereξµ ∈ {−1, 1}N .
Our aim is to evaluate the performance of the on-line Hebbian learning rule (6) as

a function of the number of training stepsm. This calculation becomes tractable in the
thermodynamic limitN → ∞; the appropriate time variable is thent = m/N . Basic
quantities of interest are the generalization error and the training error. The generalization
error, which we choose to measure with respect to theclean teacher, is the probability of
student and (clean) teacher producing different outputs on a randomly chosen test input. Hence
Eg = 〈θ [−(J · ξ)(B∗ · ξ)]〉ξ, with the usual result

Eg = 1

π
arccos

(
R√
Q

)
. (7)

HereQ = J2 is the squared length of the student weight vector, andR = B∗ · J its overlap
with the teacher weights. These are our basic scalar observables. The training errorEt is the
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fraction of errors that the students makes on the training set, i.e., the fraction of training outputs
that are predicted incorrectly. It is given by

Et =
∫

dx
∑
T=±1

P(x, T )θ(−T x)

whereP(x, T ) is the joint distribution of the student fieldsx = J · ξ and the teacher outputs
T over the training set. Because the teacher outputs depend on the teacher fields, according
to P(T |y) = 1

2[1 + T τ(y)], it is useful to include the latter and to calculate the distribution
P(x, y, T ); we will see later that this also leads to a rather transparent form of the result.
Formally, the joint field/output distribution is defined in the obvious way,

P(x, y, T ) = 1

p

p∑
µ=1

δ(x − J · ξµ) δ(y −B∗ · ξµ) δT,T µ . (8)

For infinitely large systems,N → ∞, one can prove that the fluctuations in mean-
field observables such as{Q,R,P (x, y, T )}, due to the randomness in the dynamics, will
vanish [10]. Furthermore one assumes, with convincing support from numerical simulations,
that forN → ∞ the evolution of such observables, when observed for different random
realizations of the training set, will be reproducible (i.e., the sample-to-sample fluctuations
will also vanish, which is called ‘self-averaging’). Both properties are central ingredients of
all current theories. We are thus led to the introduction of averages of our observables, both
with respect to the dynamical randomness and with respect to the randomness in the training
set (always to be carried out in precisely this order):

Q(t) = lim
N→∞
〈〈Q〉〉sets R(t) = lim

N→∞
〈〈R〉〉sets (9)

Pt(x, y, T ) = lim
N→∞
〈〈P(x, y, T )〉〉sets. (10)

The largeN -limits here are taken at constantt andα, i.e., with the number of weight updates
and the number of training examples scaling asm = Nt andp = Nα, respectively.

Iterating the learning rule (6), we find an explicit expression for the student weight vector
afterm training steps:

J(m) = σmJ0 +
η

N

m−1∑
`=0

σm−`−1ξµ(`)T µ(`) (11)

where

σ = 1− γ

N
.

Equation (11) will be the natural starting point for our calculation. We will also frequently
encounter averages of the form

〈v · ξT (ξ)〉ξ,T
which we now calculate. The average overT is trivial and, using assumption (2), gives
〈v · ξτ(B∗ · ξ)〉ξ. Provided all components of the vectorv are of the same order,v = v · ξ
andy = B∗ · ξ become zero mean Gaussian variables forN → ∞ with 〈vy〉 = v ·B∗ and
〈y2〉 = (B∗)2 = 1. By averaging overv first for fixedy, we obtain the desired result

〈v · ξT (ξ)〉ξ,T = ρv ·B∗ ρ = 〈yτ(y)〉 =
∫

Dy yτ(y) (12)
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with the familiar shorthand Dy = (2π)−
1
2 e−y

2/2 dy. Using (3) and (5), one finds for the
proportionality constantρ the explicit expressions

ρ =
√

2

π
(1− 2λ) (output noise) (13)

ρ =
√

2

π

1√
1 +62

(Gaussian weight noise) (14)

for the two noise models that we will consider in some detail.

3. Simple scalar observables

It is a simple matter to calculate the values ofQ andR afterm learning steps, using (11). For
Q, we find

Q = σ 2mJ2
0 +

2η

N

m−1∑
`=0

σ 2m−`−1J0 · ξµ(`)T µ(`)

+
η2

N2

m−1∑
`,`′=0

σm−`−1σm−`
′−1ξµ(`) · ξµ(`′)T µ(`)T µ(`′).

We now average both with respect to dynamical (or path) randomness and with respect to the
randomness in the training set, and take the limitN →∞ at constant learning timet = m/N
(see (9)). Separating out the terms with` = `′ from the double sum, and using (12), we obtain

Q(t) = e−2γ tQ0 + 2ηρR0 lim
N→∞

1

N

tN∑
`=0

σ 2tN−` + η2 lim
N→∞

1

N

tN∑
`=0

σ 2tN−2`

+η2 lim
N→∞

1

N2

∑
`6=`′

σ tN−`σ tN−`
′ 〈〈ξµ(`) · ξµ(`′)T µ(`)T µ(`′)〉〉sets.

HereQ0 = J2
0 andR0 = J0 · B∗ are the squared length and overlap of the initial student

weights, respectively. After averaging over the dynamical randomness, the average in the
last term becomes(1/p2)

∑p

µ,ν=1〈ξµ · ξνT µT ν〉sets. The terms withµ = ν each contribute
(ξµ)2 = N to this sum; the others make a contribution ofρ2 each, as one finds by applying (12)
twice. Assembling everything, we have

Q(t) = e−2γ tQ0 + 2ρR0
η

γ
e−γ t (1− e−γ t ) +

η2

2γ
(1− e−2γ t ) +

η2

γ 2

(
1

α
+ ρ2

)
(1− e−γ t )2

(15)

whereρ is given by equations (13) and (14) in the examples of output noise and Gaussian
weight noise, respectively, and more generally by (12). In a similar manner we find that

R(t) = lim
N→∞

σ tNR0 +
η

N

tN∑
`=0

σ tN−`〈〈B∗ · ξµ(`)T µ(`)〉〉sets

= e−γ tR0 +
ηρ

γ
(1− e−γ t ). (16)

We note in passing that our calculations easily generalize to the case of a variable learning
rateη(t). Sums such asη

N

∑tN
`=0 σ

tN−` would simply be replaced by1
N

∑tN
`=0 σ

tN−`η(`/N).
Usingσ tN−` = (1− γ /N)tN−` = exp[−γ t + γ `/N +O(1/N)] we see that

lim
N→∞

1

N

tN∑
`=0

σ tN−`η(`/N) =
∫ t

0
ds e−γ (t−s)η(s)
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which reduces to the familiar result in the case whenη is constant. Other sums involving a
variable learning rate can be treated in similar fashion.

The generalization error follows directly from the above results and (7); its asymptotic
value is

Eg,∞ = lim
t→∞Eg(t) = 1

π
arccos

(
ρ√

γ /2 + 1/α + ρ2

)
. (17)

In fact, one sees from (15), (16) that (forN → ∞) all noisy teachers with the sameρ
will give the same generalization error at any timet . This is true, in particular, of output
noise and Gaussian weight noise when their respective parametersλ and6 are related by
1− 2λ = (1 +62)−

1
2 . More generally, one can use (13) to associate, with any type of teacher

noise obeying our basic assumption (2), an effective output noise parameterλeff given by

1− 2λeff =
√
π

2
ρ =

√
π

2
〈yτ(y)〉. (18)

Note, however, that this effective teacher error probabilityλeff will in general not be identical
to thereal teacher error probabilityλreal. The latter is defined as the probability of an incorrect
teacher output for a random input,λreal= 〈P(T = − sgn(B∗ · ξ)|ξ)〉ξ. Using (1), this can be
rewritten asλreal= 〈 12[1− sgn(B∗ · ξ)T (ξ)]〉ξ, and with (2) one obtains

1− 2λreal= 〈sgn(y)τ (y)〉. (19)

Comparing with (18), one sees that in the effective error probability that is relevant to our
Hebbian learning process, errors for inputs with large teacher fieldsy are weighted more heavily
than in the real error probability. For output noise, this is irrelevant because the probability of
an incorrect teacher error is independent ofy, andλreal andλeff are therefore identical. For
Gaussian weight noise, on the other hand, errors are most likely to occur near the decision
boundary of the teacher (y = 0). These are suppressed by the weighting in the effective
error probability, and soλeff < λreal. Explicitly, one finds in this caseλreal= 1

π
arctan6, and

from (14),λeff = 1
2[1−(1+62)−1/2]; the relation between effective and real error probabilities

for Gaussian weight noise (see figure 1) is therefore

λeff = 1
2[1− cos(πλreal)] = sin2(πλreal/2).

Having established the general features of the evolution of the generalization error in
our system, we briefly analyse some special limits in order to clarify the roles of the various
parameters involved. We note first that equations (15) and (16) can be combined to give the
squared length of the component of the student weight vector orthogonal to the teacherB∗ as

Q(t)− R2(t) = e−2γ t (Q0 − R2
0) +

η2

2γ
(1− e−2γ t ) +

η2

αγ 2
(1− e−γ t )2. (20)

This is independent ofρ and hence of the noise level of the teacher: because of the perceptron
structure of the teacher, the components of the training inputs orthogonal toB∗ are uncorrelated
with the training outputs; their influence on the learning process is therefore not modified by
noise. In the short-time regime, equations (16) and (20) simplify to

R(t) = R0 + ηρt

Q(t)− R2(t) = Q0 − R2
0 + η2t +

η2

α
t2.

(21)

Note that the second contribution toQ−R2 is of a ‘diffusive’ nature (Q−R2 ∼ t). It reflects
the stochastic nature of the on-line learning process; correspondingly, it vanishes in the small
learning rate limit (η→ 0 at constant rescaled learning timeηt) where such (path) fluctuation
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Figure 1. Relation between the real output error probabilityλreal and the effective output error
probabilityλeff for noisy teachers. For output noise the two are identical. One observes that, for
the same ‘real’ noise level, weight noise is significantly less disruptive to the learning process than
output noise.

effects average out. The finite-α contribution, on the other hand, does survive in this limit; its
t2 scaling corresponds to ‘ballistic’ motion, i.e. a constant drift velocity of the student weight
vector. This, of course, arises from the fact that the training set average of the vectorsξµT µ

has a non-zero component orthogonal toB∗ as long asα is finite.
The expressions (21) are valid in the short-time region characterized byt � 1/γ ; they

are independent ofγ because in this regime the number of learning steps is still too small
for the weight decay to have had a noticeable effect. For larger learning times, on the other
hand,Q, R and hence alsoEg approach their asymptotic values exponentially quickly with
decay rateγ . For γ → 0, this rate vanishes; equations (21) are then valid at all times, and
the generalization error decays as a power law,Eg(t)− Eg,∞ ∼ 1/t (orEg(t) ∼ 1/

√
t in the

special caseEg,∞ = 0).
In addition to 1/γ , the timescale for crossover into the asymptotic regime, there is a second

timescale in the problem: Whent ≈ α, the finite size of the training set will make itself felt
because examples start to be ‘recycled’ in the learning process. Consistent with this intuition,
one can show in equations (20) and (21) that the value ofα does not affect the results as long
ast � α. If α � 1/γ , then the system asymptotes before it even ‘realizes’ thatα was finite,
and one finds indeed that in this case the results are independent ofα for all learning timest .

At this point, a brief discussion of the effect of the weight decayγ on the asymptotic
generalization errorEg,∞, equation (17), is in order. If we think of on-line learning as
approximating off-line gradient descent on some fixed cost function, scaled by a learning
rateη, then it may seem surprising thatEg,∞ is independent of this learning rate, while the
value of the weight decayγ remains relevant† even forα → ∞. However, the analogy
with off-line gradient descent requires a different parametrization of the weight decay, which
resolves these issues. The cost function for off-line (batch) gradient descent normally consists
of the batch training error plus a fixed quadratic (weight decay) penalty term. If we callγ̃ the

† To avoid confusion, we stress that while theasymptoticgeneralization errorEg,∞ is always optimized by the choice
γ = 0, this is not true in general forEg(t) at finite learning timest .
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coefficient of this penalty term, then this corresponds to a value of the weight decayγ = ηγ̃ /α
in our scenario. Here the factorη comes from the overall scaling of the update steps withη;
the factor 1/α arises because the batch training error scales with the training set size while the
penalty term remains fixed (cf the discussion in [8]). With this scaling, the effect of the ‘off-line
weight decay’γ̃ onEg,∞ does in fact vanish forα→∞; furthermore,Eg,∞ decreases as the
learning rateη is decreased at constantγ̃ and is minimal atη = 0.

We close this section by asking whether the generalization errorEg(t) can have a minimum
at a finite timet , i.e., whether overtraining can occur in our problem. After a straightforward
but tedious calculation we find thatEg(t) as given by (7), (15), (16) is stationary at the point
t = t∗, where

t∗ = 1

γ
log

[
−2γ η−1ρQ0 sin2(πEg,0)− 2Q1/2

0 α−1 cos(πEg,0) + ηρ

ηρ −Q1/2
0 (2/α + γ ) cos(πEg,0)

]
. (22)

HereEg,0 ≡ Eg(0) is the initial generalization performance of the student. It turns out that
Eg(t) has aminimum at t∗ if the numerator of the logarithm in equation (22) is negative. Of
course,t∗ must be real andpositive—which demands that the denominator of the logarithmic
term in (22) be negative, and that the numerator be less than the denominator. This implies
thatEg(t) will have a minimum att∗ if

η < ρ−1(γ + 2/α)Q1/2
0 cos(πEg,0) and η < 2ρQ1/2

0 sin(πEg,0) tan(πEg,0). (23)

These conditions apply whenEg,0 ∈ [0, 1
2), corresponding to an initial performancebetter

than random guessing; whenEg,0 > 1
2, the generalization errorEg(t) is always monotonically

decreasing in time. When the conditions (23) are satisfied (which is always the case for
sufficiently small learning rateη, as long asEg,0 <

1
2) the generalization error has a minimum

at t∗. Maxima inEg(t) are also possible; the corresponding conditions are obtained from (23)
by reversing both inequality signs. We reiterate that the above effects can occur only if the
initial performance of the student is better than random guessing. They arise essentially out of
the competition between ‘forgetting’ the initial state, and learning a new weight vector from
the training data (whose performance, given fort →∞ byEg,∞, may be better or worse than
the initial one). In this sense, they are rather more trivial than more conventional overtraining
effects observed in other systems, which occur only for noisy training sets of finite size; in our
case, a non-monotonicEg(t) is possible even for noise-free teachers and infinite training sets.

4. Joint field distribution

The calculation of the average of the joint field distribution starting from equation (10) is
more difficult than that of the scalar observables. It is convenient to work in terms of the
characteristic function

P̂t (x̂, ŷ, T̂ ) = 〈e−i(x̂x+ŷy+T̂ T )〉Pt (x,y,T ). (24)

Using equations (8), (10), (11), we then find that

P̂t (x̂, ŷ, T̂ ) = lim
N→∞

〈
1

p

p∑
µ=1

exp[−i(x̂σ tNJ0 · ξµ + ŷB∗ · ξµ + T̂ T µ)]

×
〈

exp

(
− iηx̂

N

tN∑
`=0

σ tN−`ξµ · ξµ(`)T µ(`)
)〉〉

sets

. (25)

Performing the path average gives〈
exp

(
− iηx̂

N

tN∑
`=0

σ tN−`ξµ · ξµ(`)T µ(`)
)〉
=

tN∏
`=0

[
1

p

p∑
ν=1

exp

(
− iηx̂

N
σ tN−`ξµ · ξνT ν

)]
.
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After substitution of this result into (25), only a training set average remains. Once this has
been carried out, all terms in the sum overµwill be exactly equal. Anticipating this by setting
µ = 1, we get

P̂t (x̂, ŷ, T̂ ) = lim
N→∞

〈
exp[−i(x̂σ tNJ0 · ξ1 + ŷB∗ · ξ1 + T̂ T 1)]

×
tN∏
`=0

[
1

p

p∑
ν=1

exp

(
− iηx̂

N
σ tN−`ξ1 · ξνT ν

)]〉
sets

. (26)

Consider now the productS = ∏tN
`=0[. . .]. The ν = 1 term of the sum in square brackets

needs to be treated separately becauseξ1 · ξ1 = N . Forν > 1, on the other hand, the products
ξ1 · ξν are overlaps betweendifferentinput vectors and therefore only ofO(

√
N); the rescaled

overlapsvν = ξ1 · ξν/
√
N are ofO(1). In the sum overν > 1 in

logS =
tN∑
`=0

log

[
1

p
exp(−iηx̂σ tN−`T 1) +

1

p

∑
ν>1

exp

(
− iηx̂√

N
σ tN−`vνT ν

)]
the second exponential therefore has an argument ofO(N−1/2) and can be Taylor expanded.
Terms up toO(1/N) (i.e. up to second order) need to be retained because of the sum over the
O(N) values of̀ , and so

logS =
tN∑
`=0

log

[
1

p
exp(−iηx̂σ tN−`T 1) +

p − 1

p

+
1

p

∑
ν>1

(
− iηx̂√

N
σ tN−`vνT ν − η

2x̂2

2N
σ 2tN−2`v2

ν

)]

= 1

p

tN∑
`=0

[
exp(−iηx̂σ tN−`T 1)− 1− iηx̂σ tN−`

1√
N

∑
ν>1

vνT
ν

−1

2
η2x̂2σ 2tN−2` 1

N

∑
ν>1

v2
ν

]
where contributions ofO(N−1/2) have been discarded. Transforming the first sum overl into
an integral over time (by considering appropriate Riemann sums), we then obtain

logS = χ(x̂T 1)− iηx̂u1

γ
(1− e−γ t )− η

2x̂2u2

4γ
(1− e−2γ t ) (27)

where

χ(w) = 1

α

∫ t

0
ds {exp[−iηwe−γ (t−s)] − 1} (28)

and

u1 = 1

α
√
N

∑
ν>1

vνT
ν u2 = 1

p

∑
ν>1

v2
ν .

Further progress requires considering the statistics of the random variablesu1 andu2. For
N → ∞, thevν are independent Gaussian variables with zero mean and unit variance. By
the central limit theorem,u2 therefore has fluctuations ofO(N−1/2) and can be replaced by
its average〈u2〉 = 1 in the thermodynamic limit. Similarly, because the productsvνT

ν are
uncorrelated for differentν, u1 becomes Gaussian in this limit. Using (12), its mean and
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variance can be calculated as

〈u1〉 = 1

α
√
N

∑
ν>1

〈vνT ν〉 = p − 1

αN
〈ξ1 · ξT (ξ)〉 = ρB∗ · ξ1 +O(N−1)

〈(1u1)
2〉 = p − 1

α2N
[〈v2

ν 〉 − 〈vν〉2] = 1

α
[1−O(N−1)].

We conclude that, for largeN , u1 = ρB∗ · ξ1 + α−1/2û, whereû is a unit variance Gaussian
random variable with mean zero. We are now in a position to averageS as given by (27) over
all realizations of{(ξν, T ν), ν > 1}, with the result

〈S〉 = exp

[
χ(x̂T 1)− iηx̂ρB∗ · ξ1

γ
(1− e−γ t )− η2x̂2

2αγ 2
(1− e−γ t )2 − η

2x̂2

4γ
(1− e−2γ t )

]
.

Inserting this into equation (26) for the characteristic function, we are left with a final average
overξ1 andT 1, with the former entering only through the fieldsu = J0 · ξ1 andy1 = B∗ · ξ1:

P̂t (x̂, ŷ, T̂ ) =
〈
exp

[
−i(x̂e−γ tu + ŷy1 + T̂ T 1) + χ(x̂T 1)− iηx̂ρy1

γ
(1− e−γ t )

− η2x̂2

2αγ 2
(1− e−γ t )2 − η

2x̂2

4γ
(1− e−2γ t )

]〉
u,y1,T 1

. (29)

We now observe thatT 1 only depends ony1, but not onu; correspondingly,u is independent
of T 1 if y1 is given. For largeN , the two fieldsu andy1 are zero mean Gaussian random
variables with〈u2〉 = Q0, 〈uy1〉 = R0 and〈(y1)2〉 = 1. The average of theu-dependent factor
in (29), for giveny1, is therefore

〈exp(−ix̂e−γ tu)〉u|y1 = exp[−ix̂e−γ tR0y
1− 1

2 x̂
2e−2γ t (Q0 − R2

0)].

Inserting this into (29), and using (16), (20), one finds that the terms in the exponential which
are linear inx̂ combine to a term proportional toR(t), whereas the quadratic terms inx̂ conspire
to give a contribution proportional toQ(t)− R2(t):

P̂t (x̂, ŷ, T̂ ) = 〈exp[−iŷy1− iT̂ T 1 + χ(x̂T 1)− 1
2 x̂

2(Q− R2)− iRx̂y1]〉y1,T 1. (30)

Finally, we recast this result in terms of the conditional distribution ofx, giveny andT . To do
this, first note that the distribution ofy1 andT 1 that is to be averaged over on the right-hand side
of (30) is just the distribution of the teacher fieldy and the teacher outputT over the training set.
We rename them appropriately and write out the definition (24) of the characteristic function
on the left-hand side:∫

dx dy
∑
T=±1

exp[−iŷy − iT̂ T − ix̂x]Pt(x|y, T )P (y, T )

=
∫

dy
∑
T=±1

exp[−iŷy − iT̂ T + χ(x̂T )− 1
2 x̂

2(Q− R2)− iRx̂y]P(y, T ).

Equality for all ŷ andT̂ implies that∫
dx exp(−ix̂x)Pt (x|y, T ) = exp[χ(x̂T )− 1

2 x̂
2(Q− R2)− iRx̂y]

and hence our final result†

Pt(x|y, T ) =
∫

dx̂

2π
exp[ix̂(x − Ry) + χ(x̂T )− 1

2 x̂
2(Q− R2)] (31)

† Equation (31) can also be derived by using Fourier transforms to obtainPt (x, y, T ) from (30), and then dividing
by P(y, T ).
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which is remarkably simple. In particular, we note that in thisconditionaldistribution ofx,
the noise properties enter only through the parameterρ; in fact, they only affect the factor
exp(−ix̂Ry), while bothQ−R2 andχ(x̂T ) are actually independent ofρ. Equation (31) also
shows that the dependence of the student field ony andT can be written in the simple form

x = Ry +11 + T12

where11 and12 are random variables which are independent of each other and ofy andT .
Remarkably, they also do not depend on any properties of the noisy perceptron teacher:11 is
simply Gaussian with zero mean and varianceQ − R2, while the distribution of12 follows
from the characteristic function〈exp(−i1̂12)〉 = exp(χ(1̂)). All non-Gaussian features of
the student field distribution are encoded in12. Becauseχ(·) is inversely proportional to
α, the size of the training set, it is immediately obvious how the student field distribution
recovers its Gaussian form forα → ∞. More precisely, it can be shown that even for finite
α, non-Gaussian effects in the distribution ofx are negligible whenevert � α. As before,
this corresponds to the condition that training examples have not yet been ‘recycled’ in the
learning process. Similarly, ifα � 1/γ , then the system reaches its asymptotic limit before
it ‘realizes’ thatα is finite; the distribution ofx is then Gaussian for all timest . Finally, we
note that in the absence of weight decay (γ = 0), the distribution of12 can be determined
explicitly: 12/η then obeys a Poisson distribution with meant/α. By comparison with the
explicit learning rule (11), it is easy to interpret this result for12. It represents the ‘anomalous’
contribution to the overlapx = J · ξµ from the learning steps where the same exampleξµ

was actually used to updateJ ; the number of such learning steps obviously has the required
Poisson distribution. For non-zero weight decay, the distribution of12 broadens around the
discrete values 0,η, 2η, . . . because the effect of each update with the same example is more
or less heavily damped by the weight decay depending on when it took place.

Using the fact thaty is Gaussian with zero mean and unit variance, the training errorEtr

and student field probability densityPt(x) follow from (31) as

Etr =
∫

dx Dy
∑
T=±1

θ(−xT )Pt (x|y, T )P (T |y) (32)

Pt(x) =
∫

Dy
∑
T=±1

Pt(x|y, T )P (T |y) (33)

in which Dy = (2π)− 1
2 e−

1
2y

2
dy. We note again that the dependence ofEtr andPt(x) on the

specific noise model—for a given value ofρ—arises solely throughP(T |y). We remind the
reader that this teacher output probability is given by (3),

P(T |y) = (1− λ)θ(T y) + λθ(−Ty)
for the case of output noise, while for weight noise (5) implies

P(T |y) = 1
2[1 + T erf(y/

√
26)].

In the appendix, we give explicit expressions for the training error and student field distribution
in these two cases (see equations (48)–(51)), which also reveal a close relation between them.

5. Comparison with numerical simulations

From the theoretical point of view, equations (31)–(33) constitute the clearest expression of
our results on the joint field distribution since the dependence of the distribution on the given
noise has been separated out in a transparent manner. However, we have found that another
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Figure 2. Student field distributionPt (x) observed during on-line Hebbian learning with output
noise of strengthλ = 0.2, at different times (from left to right:t = 1, 2, 3, 4), for training set size
α = 1

2 , learning rateη = 1, and weight decayγ = 1
2 , with initial conditionsQ0 = 1 andR0 = 0.

Histograms: distributions as measured in numerical simulations of anN = 10 000 system. Solid
lines: predictions of the theory.

equivalent formulation can be useful from the point of view of numerical computations; this
is detailed in the appendix.

It will be clear that there is a large number of parameters that one could vary in order
to generate different simulation experiments with which to test our theory. Here we have
to restrict ourselves to presenting a number of representative results. Figure 2 shows, for
the output noise model, how the probability densityPt(x) of the student fieldsx = J · ξ
develops in time, starting as a Gaussian distribution att = 0 (following random initialization
of the student weight vector) and evolving into a highly non-Gaussian bi-modal one. Figure 3
compares our predictions for the generalization and training errorsEg andEtr with the results
of numerical simulations (again for teachers corrupted by output noise) for different initial
conditions,Eg,0 = 0 andEg,0 = 0.5, and for different choices of the two most important
parametersλ (which controls the amount of teacher noise) andα (which measures the relative
size of the training set). Different choices of the weight decayγ have also been explored,
and yield similar results. The system is found to have no persistent memory of its past (which
will be different for some other learning rules), the asymptotic values ofEg andEtr being
independent of the initial student vector†.

Figure 4 shows the probability densityPt(x) of the student fieldsx = J · ξ for the
Gaussian weight noise model, with effective error probabilityλeff chosen identical to the error
probability used to produce the corresponding graphs in figure 2 for output noise. Finally
we show in figure 5 an example of a comparison between the error measures corresponding
to teachers corrupted by output noise and teachers corrupted by Gaussian weight noise, both
with identical effective output noise probabilityλeff = 0.2. Here our theory predicts both

† In the examples shown,Eg is always larger thanEtr . However, this is not true generally: We are measuring the
generalization errorEg with respect to thecleanteacher, whereas the (training) examples that determine the training
errorEt arenoisy. Thus, under certain circumstances,Et can be larger thanEg. A trivial example is the case of an
infinite training set (α→∞) without weight decay (γ = 0). From (17),Eg then tends to zero for long timest , while
the training error will approachEt = λreal, which is non-zero for a noisy teacher. A generalization error relative to the
noisy teacher can also be defined in our problem; it turns out to beEg(noisy)= {1−〈τ(y) erf(yR[2(Q−R2)]−1/2)〉}/2.
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Figure 3. Generalization errors (diamonds/curves) and training errors (circles/curves) as observed
during on-line Hebbian learning from a teacher corrupted by output noise, as functions of time.
Upper two graphs: noise levelλ = 0.2 and training set sizeα ∈ {0.5, 4.0} (initial conditions: upper
left, Eg,0 = 0.5; upper right:Eg,0 = 0). Lower two graphs:α = 1 andλ ∈ {0.0, 0.25} (lower
left, Eg,0 = 0.5; lower right,Eg,0 = 0). Markers: simulation results for anN = 5000 system.
Solid curves: predictions of the theory. In all casesQ0 = 1, learning rateη = 1 and weight decay
γ = 0.5.

noise types to exhibit identical generalization errors and almost identical training errors (with
a difference of the order of 10−4, see the appendix) at any time. These predictions are borne out
by the corresponding numerical simulations (carried out with networks of sizeN = 10 000).
We conclude from these figures that in all cases investigated the theoretical results give an
extremely satisfactory account of the numerical simulations, with finite size effects being
unimportant for the system sizes considered.

As pointed out in the theoretical analysis at the end of section 3, there are no genuine
overfitting effects in Hebbian learning with constant learning rateη. Any minima or maxima in
Eg(t) are due to the competition between forgetting a better-than-random initial generalization
performance and learning a new set of weights with a different performance from the training
data. We have run a number of simulations to address this point, and found our theoretical
prediction confirmed. For time-dependent learning rates, on the other hand, preliminary
theoretical work indicates that genuine overfitting effects can occur quite generically.
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Figure 4. Student field distributionPt (x) observed during on-line Hebbian learning with Gaussian
weight noise of effective error probabilityλeff = 0.2 (cf equation (18)), at different times (from left
to right: t = 1, 2, 3, 4), for training set sizeα = 1

2 , learning rateη = 1, and weight decayγ = 1
2 ,

with initial conditionsQ0 = 1 andR0 = 0. Histograms: distributions as measured in numerical
simulations of anN = 10 000 system. Solid curves: predictions of the theory. See the appendix
for further discussion of the close similarities with figure 2.

Figure 5. Comparison between output noise and Gaussian weight noise, with parameters such
that both cases have identical effective error probabilityλeff = 0.2. Open diamonds (output noise)
and filled diamonds (weight noise): generalization errors as observed in numerical simulations,
as functions of time. Open circles (output noise) and filled circles (weight noise): training errors
as observed in numerical simulations, as functions of time. In all cases training set sizeα = 0.5,
learning rateη = 1, weight decayγ = 0.5, initial conditionsQ0 = 1 andEg,0 = 0.5, and system
sizeN = 10 000. Solid curves: theory (which here predicts identical generalization errors and
virtually identical training errors).

6. Conclusion

Starting from a microscopic description of Hebbian on-line learning in perceptrons with
restricted training sets, of sizep = αN whereN is the number of inputs, we have developed
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an exact theory in terms of macroscopic observables which has enabled us to predict the
generalization error and the training error, as well as the probability density of the student local
fields, in the thermodynamic limitN →∞. Our results are found to be in excellent agreement
with numerical simulations, as carried out for systems of sizeN = 5000 andN = 10 000,
and for various choices of the model parameters, both for teachers corrupted by output noise
and for teachers corrupted by Gaussian input noise. Generalizations of our calculations to
scenarios involving, for instance, time-dependent learning rates or time-dependent decay rates
are straightforward. Closer analysis of the results for these cases, and for more complicated
teachers such as noisy ‘reversed wedges’, may be an issue for future work.

Although it will be clear that our present calculations cannot be extended to non-Hebbian
rules, since they ultimately rely on our ability to write down the microscopic weight vector
J at any time in explicit form (11), they do indeed provide a significant yardstick against
which more sophisticated and more general theories can be tested. In particular, they have
already played a valuable role in assessing the conditions under which a recent general theory
of learning with restricted training sets, based on a dynamical version of the replica formalism,
is exact [10,11].
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Appendix. Evaluation of the field distribution and training error

In this appendix, we give alternative forms of our main results (31)–(33) for the joint field
distribution and training error that are more suitable for numerical work. For this purpose,
it is useful to shift attention from the noisy teacher outputT to the corrupted teacher fieldz
that produces it; the two are linked byT = sgn(z). This is entirely natural in the case of
Gaussian weight noise. As discussed after equation (4),z then differs from the clean teacher
field y by an independent zero mean Gaussian variable with variance62; explicitly, one has
the conditional distribution

P(z|y) = 1√
2π62

e−(z−y)
2/262

(Gaussian weight noise).

The case of output noise can be treated similarly, by assuming thatz is identical toy with
probability 1− λ, but has the opposite sign with probabilityλ:

P(z|y) = (1− λ)δ(z− y) + λδ(z + y) (output noise). (34)

We now consider the joint distributionPt(x, y, z). It can be derived by complete analogy with
the calculation in section 4. For the conditional distribution ofx, one finds that

Pt(x|y, z) = Pt(x|y, sgn(z)).

Intuitively, this follows from the fact that during learning, the student only ever sees the noisy
teacher output sgn(z), but not the corrupted fieldz itself; the student fieldx can therefore
depend onz only through sgn(z). Multiplying by the joint distribution ofy andz, and using
the result (31), one thus finds, for the case of output noise,

Pt(x, y, z) = [(1− λ)δ(z− y) + λδ(z + y)]
e−

1
2y

2

√
2π

∫
dx̂

2π
e−

1
2 x̂

2(Q−R2)+ix̂(x−yR)+χ(x̂sgn(z))
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with the marginal distribution

Pt(x, z) = e−
1
2 z

2

√
2π

∫
dx̂

2π
e−

1
2 x̂

2(Q−R2)+ix̂x+χ(x̂ sgn(z))[(1− λ)e−ix̂zR + λeix̂zR]. (35)

The corresponding expressions in the case of Gaussian weight noise read

Pt(x, y, z) = 1

2π6

∫
dx̂

2π
e−

1
2 x̂

2(Q−R2)+ix̂(x−Ry)+χ(x̂sgn(z))−[z2−2yz+y2(1+62)]/(262)

and

Pt(x, z) = e−
1
2 z

2/(1+62)√
2π(1 +62)

∫
dx̂

2π
e−

1
2 x̂

2[Q−R2/(1+62)]+i x̂[x−Rz/(1+62)]+χ(x̂sgn(z)). (36)

In both cases, the training error and the probability distribution of the student fieldx are then
determined by

Etr =
∫

dxdz θ(−xz)Pt (x, z) Pt (x) =
∫

dz Pt (x, z)

respectively. For a numerical computation of these two quantities, it is imperative to further
reduce the number of integrations analytically, which turns out to be possible. In the following,
we drop the time subscriptt on all distributions to save notation.

First we deal with the case of output noise. In the marginal distribution (35), we make the
change of variablêx = k sgn(z) to get

P(x, z) = e−
1
2 z

2

√
2π

∫
dk

2π
e−

1
2k

2(Q−R2)+χ(k)+ikxsgn(z){(1− λ)e−ik|z|R + λeik|z|R}.
The training error is

Etr =
∫

dx dz P (x, z)θ(−xz) =
∫ ∞

0
dx [P+(−x) + P−(x)]

where

P±(x) =
∫

dz P (x, z)θ(±z) = 1

2

∫
dk

2π
Dz e−

1
2k

2(Q−R2)+χ(k)±ikx{(1− λ)e−ik|z|R + λeik|z|R}.
(37)

We see thatP+(x) = P−(−x) ≡ 5(x). In terms of5(x) we have the formulae

P(x) = 5(x) +5(−x) Etr = 2
∫ ∞

0
dx 5(−x). (38)

The function5(x) can be further simplified by decomposingχ into its real (χr = Re(χ)) and
imaginary (χi = Im (χ)) parts:

5(x) =
∫

dk

4π
Dz e−

1
2k

2(Q−R2)+χ(k)+ikx{(1− λ)e−ik|z|R + λeik|z|R}

=
∫

dk

4π
Dz e−

1
2k

2(Q−R2)+χr(k){(1− λ) cos[χi(k) + k(x − R|z|)]
+λ cos[χi(k) + k(x +R|z|)]}

=
∫

dk

4π
e−

1
2Qk

2+χr(k){cos[χi(k) + kx] + (1− 2λ) sin[χi(k) + kx]G(kR)}
(39)

in which

G(3) = e
1
23

2
∫

Dz sin(3|z|) = 3√
π

1F1

(
1

2
; 3

2
; 1

2
32

)
(40)
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and1F1(. . .) is the degenerate hypergeometric function (see [13], p 1058). From equation (38)
we now immediately obtain our final result for the student field distribution:

P(x) =
∫

dk

2π
e−

1
2Qk

2+χr(k) cos(kx){cos[χi(k)] + (1− 2λ)G(kR) sin[χi(k)]}. (41)

To further simplify the expression (38) for the training error, we write

Etr = lim
L→∞

2
∫ 0

−L
dx 5(x) = 2 lim

L→∞
I (L)

where, from (39)

I (L) =
∫

dk

4π
e−

1
2Qk

2+χr(k)

×
{∫ 0

−L
dx cos[χi(k) + kx] + (1− 2λ)G(kR)

∫ 0

−L
dx sin[χi(k) + kx]

}
.

Thus

I (∞) = −
∫

dk

4πk
e−

1
2Qk

2+χr(k){(1− 2λ)G(kR) cos[χi(k)] − sin[χi(k)]}

+ lim
L→∞

∫
dk

4πk
e−

1
2Qk

2+χr(k){sin[kL− χi(k)]

+(1− 2λ)G(kR) cos[kL− χi(k)]}. (42)

TheL-dependent integral in (42) can be expressed as a sum of two integrals, which we consider
separately. In the first part, we replacek by k/L and obtain

lim
L→∞

∫
dk

4πk
e−

1
2Qk

2+χr(k) sin[kL− χi(k)]

= lim
L→∞

∫
dk

4πk
e−

1
2Q(k/L)

2+χr(k/L) sin[k − χi(k/L)] =
∫

dk

4πk
sin(k) = 1

4
.

Secondly, we need to consider the behaviour of∫
dk

4πk
e−

1
2Qk

2+χr(k) cos[kL− χi(k)]G(kR) (43)

in the limitL→∞. We setu = kR and note that, becauseQ > R2, one has e−
1
2Qk

2 6 e−
1
2u

2
;

furthermore,

|e− 1
2u

2
G(u)u−1| =

∣∣∣∣ ∫ Dz|z|sin(|uz|)
|uz|

∣∣∣∣ 6 ∫ Dz|z| =
√

2

π
.

Finally, χ(k) is independent ofL and is bounded as a function ofk; in fact, from (28),
|χ(k)| 6 2α−1t . It follows by an application of the Riemann–Lebesgue lemma (see e.g. [14])
that the integral (43) tends to zero asL→∞. We conclude that for output noise the training
error is given by

Etr = 1

2
−
∫

dk

2πk
e−

1
2Qk

2+χr(k){(1− 2λ)G(kR) cos[χi(k)] − sin[χi(k)]} (44)

whereG(. . .) is defined by (40).
The procedure for Gaussian weight noise is similar to that of output noise. We start from

equation (36) and define

R̃ = R/
√

1 +62.



3338 H C Rae et al

Figure A1. Characteristic example of theoretical predictions for the training errorEtr for two noisy
teachers with identical effective error probabilityλeff = 0.2. Dashed curve: output noise; solid
curve: Gaussian weight noise. Parameters:α = γ = 0.5,Q0 = η = 1,Eg,0 = 0.5.

Upon definingx̂ = k sgn(z) in (36), replacingz by z/
√

1 +62, and continuing in the same
notation as for output noise, we find

P±(x) = 1

2

∫
dk

2π
Dz e−

1
2k

2(Q−R̃2)+χ(k)±ikx−ikR̃|z|. (45)

Since (45) can be obtained from (37) by puttingλ→ 0 andR→ R̃, we immediately obtain for
the student field distribution and the training error, respectively (see equations (41) and (44)),

P(x) =
∫

dk

2π
e−

1
2Qk

2+χr(k) cos(kx){cos[χi(k)] + G(kR̃) sin[χi(k)]} (46)

Etr = 1

2
−
∫

dk

2πk
e−

1
2Qk

2+χr(k){G(kR̃) cos[χi(k)] − sin[χi(k)]}. (47)

In particular, we can now calculate the student field distribution and the training error for both
output noise and Gaussian weight noise, with noise levels such that in both casesλeff = λ.
This guarantees that, at any time,Q,R andEg will have the same values in both cases; it also
impliesR̃ = R/

√
1 +62 = R(1−2λ). We then obtain from (41), (44), (46), (47) very similar

expressions:

P out(x) =
∫

dk

2π
e−

1
2Qk

2+χr(k) cos(kx){cos[χi(k)] + (1− 2λ)G(kR) sin[χi(k)]} (48)

P gau(x) =
∫

dk

2π
e−

1
2Qk

2+χr(k) cos(kx){cos[χi(k)] + G[(1− 2λ)kR] sin[χi(k)]} (49)

and

Eout
tr =

1

2
−
∫

dk

2πk
e−

1
2Qk

2+χr(k){(1− 2λ)G(kR) cos[χi(k)] − sin[χi(k)]} (50)

E
gau
tr =

1

2
−
∫

dk

2πk
e−

1
2Qk

2+χr(k){G[(1− 2λ)kR] cos[χi(k)] − sin[χi(k)]}. (51)

Provided parameters are chosen such that the effective error probabilities are identical, the
differences between output noise and Gaussian weight noise are restricted to the positioning
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of the factor 1− 2λ relative to the integralG(. . .), with manifestly identical expressions for
λ = 0 andλ = 1

2 (as it should be). As a result the resulting curves for field distributions and
training errors are found to be almost identical; figure A1 shows a typical example.
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