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Abstract. We solve the dynamics of on-line Hebbian learning in large perceptrons exactly, for
the regime where the size of the training set scales linearly with the number of inputs. We consider
both noiseless and noisy teachers. Our calculation cannot be extended to non-Hebbian rules, but
the solution provides a convenient and welcome benchmark with which to test more general and
advanced theories for solving the dynamics of learning with restricted training sets.

1. Introduction

Considerable progress has been made in understanding the dynamics of on-line learning
in layered artificial neural networks through the application of the methods of statistical
mechanics; see e.g. [1-3]. For an excellent review of the state-of-the-art in the field, we
refer the reader to the workshop proceedings [4], where a large number of references to earlier
work can also be found; the special case of binary perceptrons has been surveyed in detail
in [5]. For the most part, theoretical work has concentrated on systems where the training set
is much larger than the number of weight updates. In such circumstances the probability that
any given question will be repeated during the training process is negligible and it is possible
to assume for large networks, via the central limit theorem, that their local field distribution
is always Gaussian. In this paper we consigstricted training setswe suppose that the
size p of the training set scales linearly witti, the number of inputs. As a consequence the
probability that a question will reappear during the training process is no longer negligible, the
assumption that the local fields have Gaussian distributions is not tenable, and it is clear that
correlations will develop between the weights and the questions in the training set as training
progresses. In fact, the non-Gaussian character of the local fields shoulprddiction of
any satisfactory theory of learning with restricted training sets, as this is clearly demanded by
numerical simulations.

Several authors [6—-11] have discussed learning with restricted training sets but constructing
a general theory is difficult. A simple model of learning with restricted training sets which
can be solveéxactlyis therefore particularly attractive and provides a yardstick against which
more difficult and sophisticated general theories can, in due course, be tested and compared.
We show how this can be accomplished for on-line Hebbian learning in perceptrons with
restricted training sets and we obtain exact solutions for the generalization error, the training
error and the field distribution for a class of noisy teacher networks and student networks with
arbitrary weight decay. We work out in detail the two particular but representative cases of
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output noise and Gaussian weight noise. Our theory is found to be in excellent agreement with
numerical simulations and our predictions for the probability density of the student field are a
striking confirmation of them, making it clear that we are indeed dealing with local fields which
are non-Gaussian. An outline of our results is to appear in the conference proceedings [12].

2. Definitions and explicit microscopic expressions

We study on-line learning in a student perceptfynwhich tries to learn a task defined by a
noisy teacher perceptrd@n The student input—output mapping is specified by a weight vector
J according to

S:{-1,1Y - (-1, 1 S(¢) = sgnlJ - £].
For a givenJ, this is a deterministic mapping from binary inputs to binary outputs. The teacher
outputT'(€), on the other hand, is stochastic. In its most general form, it is determined by the
probabilitiesP (T = +1|€). These are related to tl@erageteacher outpuf (¢) for a given
input¢ by

P(T=+1) =3[1+£T@®] or  P(TIO=31+TT©®]. (1)

To ensure that this noisy teacher mapping can be thought of as the corrupted output of an
underlying ‘clean’ perceptron with weighB*, we make the mild assumption that the average
teacher output can be written in the form
T =1() y=DB"-¢ (2)

with some functiont(y). In other words, the noise process preserves, on average, the
perceptron structure of the teacher. The uncorrupted teacher weight vector is taken to be
normalized such thatB*)? = 1, with each componerR; of O(N*%). We also assume that
inputs are sampled randomly from a uniform distributiont{-ed, 1}". Typical values of the
(uncorrupted) ‘teacher field are then of0(1); in the thermodynamic limiv — oo that we
are interested iny is Gaussian with zero mean and unit variance.

The class of noise processes allowed by (2) is quite large and includes the standard cases
of output noise and Gaussian weight noise that are often discussed in the literature. For output
noise, the sign of the clean teacher output(sgis inverted with probability, i.e.,

P(T18) = (1 —=1)0(Ty) +10(=Ty) T(y) = (1 =24 sgn(y). ®3)

For Gaussian weight noise, the teacher output is produced from a corrupted teacher weight
vector B. The corrupted weight® differ from B* by the addition of Gaussian noise of
standard deviatiolx /+/N to each component, i.e.,

N/2 N
P(B) = [ﬁ} exp<—E(B — B*)Z) ) (4)

The scaling withV here is chosen to get a sensible result in the thermodynamic limit (corrupted
and clean weights clearly need to be of the same order). The corrupted teacher field is then
z=B-£=y+A,with A a Gaussian random variable with zero mean and variaicand

hence

T(y) = (SgN(y + A))a = erf(y/v/25). (5)

t This choice of input distribution is not critical. In fact, any other distribution with = 0 and(&;£;) = §;; will

give results identical to the ones for the present case in the Nmit+ co. Examples would be real-valued inputs

with either a Gaussian distribution with zero mean and unit variance for each component, or a uniform distribution
over the hyperspherg? = N. Likewise, we only actually require that assumption (2) should hold with probability
one (i.e. for almost all inputs) in the lim{ — oo.
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In the numerical examples presented later, we focus on the above two noise models. But
our analytical treatment applies to any teacher that is compatible with the assumption (2).
This covers, for example, the more complex cases of ‘reversed wedge’ teachers (where
(y) = sgn(y) for |y| > d andz(y) = —sgn(y) otherwised being the wedge ‘thickness’)
and noisy generalizations of these.

Our learning rule will be the on-line Hebbian rule, i.e.

JE+1 = (1 - %) J) + %gt(é)w(z) ©6)

where the non-negative parametersand n are the weight decay and the learning rate,
respectively. Learning starts from an initial set of student weigigts= J(0), for which

we assume (as for the teacher weights) thad) = O(N*%). At each iteration step a
training example, comprising an input vecgs#t® and the corresponding teacher output®,

is picked at random (with replacement) from th&ining setD. This training set consists of

p = aN examples,D = {(¢*,T"), n = 1, ..., p}; it remains unchanged throughout the
learning process. Eachtraining input veatéis assumed to be randomly drawn fr¢ml, 1}V
(independently of other training inputs, andfgfandB*), and the outpuf* = T (¢") provided

by the noisy teacher. We call this kind of scenario ‘consistent noise’: To each training input
corresponds a single output value which is produced by the teacher once and for all before
learning begins; the teachernst asked to produce new noisy outputs each time a training
input is selected for a weight update.

There are two sources of randomness in the above scenario. First of all there is the random
realization of the ‘path(w. (0), n(1), n(£), ...). Thisis simply the dynamic randomness of the
stochastic process that gives the evolution of the veEtdrarises from the random selection of
examples from the training set. Averages over this process will be denoted)asSecondly
there is the randomness in the composition of the training set. We will write averages over all
training sets as. . .)sets We note that

P
(fe 0, T40)) = %Z fE T (forall¢)
n=1

and that averages over all possible realizations of the training set are given by

1 p
(fI(€" BY. (€% B?),.... (6" B)sets= Y _ Y ... > (2_N>

El £2 EF

P
x Y [1‘[P(T“|£“>]f[<£l,Bl>,(52,BZ>,...,<5",B">]

TY,.. . Tr=+1tpu=1

where¢” e {—1, 1}V.

Our aim is to evaluate the performance of the on-line Hebbian learning rule (6) as
a function of the number of training steps. This calculation becomes tractable in the
thermodynamic limitN — oo; the appropriate time variable is then= m/N. Basic
guantities of interest are the generalization error and the training error. The generalization
error, which we choose to measure with respect toclkan teacher, is the probability of
student and (clean) teacher producing different outputs on arandomly chosen test input. Hence
Eg = (0[—(J - ©)(B* - §)])¢, with the usual result

Eq= %arccos(%) : (@)

Here Q = J2is the squared length of the student weight vector, Rnd B* - J its overlap
with the teacher weights. These are our basic scalar observables. The training esribre
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fraction of errors that the students makes on the training set, i.e., the fraction of training outputs
that are predicted incorrectly. It is given by

Et:/dx Z P(x, T)0(—Tx)
T=+1

whereP (x, T) is the joint distribution of the student fields= J - £ and the teacher outputs

T over the training set. Because the teacher outputs depend on the teacher fields, according
to P(T]y) = %[1 + Tt (y)], it is useful to include the latter and to calculate the distribution
P(x,y, T); we will see later that this also leads to a rather transparent form of the result.
Formally, the joint field/output distribution is defined in the obvious way,

1 P
P(x,y, T>=;Zm—J-éﬂ)s(y—B*-sﬂ)ar,Tu. ®)
n=1

For infinitely large systemsN — oo, one can prove that the fluctuations in mean-
field observables such 49, R, P(x, y, T)}, due to the randomness in the dynamics, will
vanish [10]. Furthermore one assumes, with convincing support from numerical simulations,
that for N — oo the evolution of such observables, when observed for different random
realizations of the training set, will be reproducible (i.e., the sample-to-sample fluctuations
will also vanish, which is called ‘self-averaging’). Both properties are central ingredients of
all current theories. We are thus led to the introduction of averages of our observables, both
with respect to the dynamical randomness and with respect to the randomness in the training
set (always to be carried out in precisely this order):

Q@) = lim ((Q))sets R(0) = lim {((R))sets ©)
FiCe,y, T) = lim {{P(x, v, T)))sets (10)

The largeN-limits here are taken at constardande, i.e., with the number of weight updates
and the number of training examples scalingias: Nt andp = Na, respectively.

Iterating the learning rule (6), we find an explicit expression for the student weight vector
afterm training steps:

m—1
J(m) = 0" Jo+ -~ DA ARl 8 (11)
N =0
where
o=1- l
N

Equation (11) will be the natural starting point for our calculation. We will also frequently
encounter averages of the form

(v-ET()e.r

which we now calculate. The average oweris trivial and, using assumption (2), gives
(v & (B* - €)). Provided all components of the vecto@are of the same orders,= v - £
andy = B* . £ become zero mean Gaussian variablesNor> oo with (vy) = v - B* and
(y?) = (B*)? = 1. By averaging oveu first for fixed y, we obtain the desired result

(v-&T(©)er = pv - B” p=t(y) = / Dy yt(y) (12)
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with the familiar shorthand B = (27)~2e>*/2dy. Using (3) and (5), one finds for the
proportionality constant the explicit expressions

p= \/7 1-2n (output noise) (13)
= Gaussian weight noise 14
p= \f Ve ght noise) (14)

for the two noise models that we will consider in some detail.

3. Simple scalar observables

It is a simple matter to calculate the valueg®indR afterm learning steps, using (11). For
Q, we find
Q — Uszg Z 2m— f—lJO . EM(Z)TH(E)
¢=0
nz m—1
+_2 Z O_m—e—lo_m—l —1€u(l) . €;L(Z )T“(Z)T’“'(Z).
£,0=0

We now average both with respect to dynamical (or path) randomness and with respect to the
randomness in the training set, and take the lishit> oo at constant learning time= m/N
(see (9)). Separating out the terms wita- ¢’ from the double sum, and using (12), we obtain

1 tN 1 ‘N
Q) =e 2" Qo+2pRo lim — D "oV~ 4+p? lim =" o¥N 2
N—oo N = N &

N—o00

. 1 _ _ ’ i
+772 I|m _2 ZUtN ZO,IN 4 ((6/4(5) . gu(@)Tﬂ(f)Tﬂ(f))>Sets
N—oo N iz

Here Qg = Jg andRg = Jp - B* are the squared length and overlap of the initial student
weights, respectively. After averaging over the dynamical randomness, the average in the
last term becomeél/ p?) ZM ,—1(€" - &'T*TV)sets The terms withw = v each contribute

(€")2 = N to this sum; the others make a contributiomé®ach, as one finds by applying (12)
twice. Assembling everything, we have

2 2 1
Q) =e" Qo+ 2pRoge‘V’(1 —e7+ g_y(l —e )+ % (; + pz) (1—e")y
(15)

wherep is given by equations (13) and (14) in the examples of output noise and Gaussian
weight noise, respectively, and more generally by (12). In a similar manner we find that

tN
T N n IN—C . pn(0) (@
R() = lim o' Ro+ ;a (B - £OT"O))sers
—e " Ry+ L a—e, (16)
14
We note in passing that our calculations easily generalize to the case of a variable learning

raten(r). Sums such ag SN o™=t would simply be replaced byt SN/ N).
Usingo'™ =t = (1 — y/N)"N =t = exp[—yt + y£/N + O(1/N)] we see that

lim NZUZN?ZU(E/N):/O\ dse*V(lfx)n(s)
=0

N—oo
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which reduces to the familiar result in the case whes constant. Other sums involving a
variable learning rate can be treated in similar fashion.

The generalization error follows directly from the above results and (7); its asymptotic
value is

+> . 17)
Vy/2+ 1o+ p?

In fact, one sees from (15), (16) that (f&f — oo) all noisy teachers with the same

will give the same generalization error at any timeThis is true, in particular, of output
noise and Gaussian weight noise when their respective parameterd > are related by
1—21 = (1+X2)~2. More generally, one can use (13) to associate, with any type of teacher
noise obeying our basic assumption (2), an effective output noise parametgven by

1— et = \/gp ~ \/?yr(y». (18)

Note, however, that this effective teacher error probabiligywill in general not be identical
to thereal teacher error probability.eo. The latter is defined as the probability of an incorrect
teacher output for a random inplites = (P(T = —sgn(B* - £)|£))¢. Using (1), this can be
rewritten askrea = (3[1 — sgn(B* - )T (€)])¢, and with (2) one obtains

1 — 2hrea = (SQNY)T(¥)). (19)

Comparing with (18), one sees that in the effective error probability that is relevant to our
Hebbian learning process, errors for inputs with large teacher fieldsweighted more heavily

than in the real error probability. For output noise, this is irrelevant because the probability of
an incorrect teacher error is independenypindiea andie¢ are therefore identical. For
Gaussian weight noise, on the other hand, errors are most likely to occur near the decision
boundary of the teachely (= 0). These are suppressed by the weighting in the effective
error probability, and s@e < Arear EXplicitly, one finds in this caskes = %arctanE, and

from (14),xet = 3[1— (1+%2)~Y/2]; the relation between effective and real error probabilities

for Gaussian weight noise (see figure 1) is therefore

Aeff = %[1 — COS(TT Areal)] = SinZ(T[)\real/Z)

Having established the general features of the evolution of the generalization error in
our system, we briefly analyse some special limits in order to clarify the roles of the various
parameters involved. We note first that equations (15) and (16) can be combined to give the
squared length of the component of the student weight vector orthogonal to the tB&cher

. 1
Egoo = lim Eg(t) = — arccos(
t—00 T

2 2
0) — R2() = €7 (Qo— R + - (1— e ¥ )+ ——(L—e 72  (20)
2y ay

This is independent of and hence of the noise level of the teacher: because of the perceptron
structure of the teacher, the components of the training inputs orthogdB&ktiee uncorrelated

with the training outputs; their influence on the learning process is therefore not modified by
noise. In the short-time regime, equations (16) and (20) simplify to

R(1) = Ro + npt

21
Q(t) — R¥(t) = Qo — R3 +n’t + =)

2
12,
o
Note that the second contribution@®— R? is of a ‘diffusive’ nature 0 — R? ~ 1). It reflects
the stochastic nature of the on-line learning process; correspondingly, it vanishes in the small

learning rate limit § — O at constant rescaled learning tim@ where such (path) fluctuation
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eff
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input noise
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0.0
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real

Figure 1. Relation between the real output error probability; and the effective output error
probability Leff for noisy teachers. For output noise the two are identical. One observes that, for
the same ‘real’ noise level, weight noise is significantly less disruptive to the learning process than
output noise.

effects average out. The finiteeontribution, on the other hand, does survive in this limit; its
t? scaling corresponds to ‘ballistic’ motion, i.e. a constant drift velocity of the student weight
vector. This, of course, arises from the fact that the training set average of the \@drs
has a non-zero component orthogonaBtbas long as is finite.

The expressions (21) are valid in the short-time region characterizeddy/y; they
are independent of because in this regime the number of learning steps is still too small
for the weight decay to have had a noticeable effect. For larger learning times, on the other
hand,Q, R and hence als&y approach their asymptotic values exponentially quickly with
decay ratey. Fory — 0, this rate vanishes; equations (21) are then valid at all times, and
the generalization error decays as a power Byit) — Eg ~ 1/t (Or Eq(t) ~ 1/+/ in the
special cas&g o, = 0).

Inadditionto Yy, the timescale for crossover into the asymptotic regime, there is a second
timescale in the problem: When~ «, the finite size of the training set will make itself felt
because examples start to be ‘recycled’ in the learning process. Consistent with this intuition,
one can show in equations (20) and (21) that the valuedies not affect the results as long
asr < a. If @ > 1/y, then the system asymptotes before it even ‘realizes'diveas finite,
and one finds indeed that in this case the results are independeftrodill learning times.

At this point, a brief discussion of the effect of the weight degagn the asymptotic
generalization errog ., equation (17), is in order. If we think of on-line learning as
approximating off-line gradient descent on some fixed cost function, scaled by a learning
raten, then it may seem surprising that, ., is independent of this learning rate, while the
value of the weight decay remains relevantt even far — oco. However, the analogy
with off-line gradient descent requires a different parametrization of the weight decay, which
resolves these issues. The cost function for off-line (batch) gradient descent normally consists
of the batch training error plus a fixed quadratic (weight decay) penalty term. If wg tadl

T Toavoid confusion, we stress that while tsymptotigeneralization erroEg ., is always optimized by the choice
y =0, this is not true in general fdZy(z) at finite learning times.
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coefficient of this penalty term, then this corresponds to a value of the weight deeayy /o
in our scenario. Here the factgrcomes from the overall scaling of the update steps with
the factor Y« arises because the batch training error scales with the training set size while the
penalty term remains fixed (cf the discussion in [8]). With this scaling, the effect of the ‘off-line
weight decay’y on Eg ., does in fact vanish fox — oo; furthermore Egy ., decreases as the
learning rate; is decreased at constghtand is minimal ayy = 0.

We close this section by asking whether the generalization Eg@)y can have a minimum
at a finite timer, i.e., whether overtraining can occur in our problem. After a straightforward
but tedious calculation we find th#t(¢) as given by (7), (15), (16) is stationary at the point
t = t*, where

P log [—ZJ/n‘lp Qo Sinf(n Ego) — 204/ et com Eq0) + np} 22)
np — Qg *(2/a +y) coslm Ego) '

Here Eqo = E4(0) is the initial generalization performance of the student. It turns out that
Eg4(t) has aminimum at¢* if the numerator of the logarithm in equation (22) is negative. Of
course* must be real angositive—which demands that the denominator of the logarithmic
term in (22) be negative, and that the numerator be less than the denominator. This implies
that Eq4(r) will have a minimum at* if

n < p Yy +2/a) 0y cosn Eqo) and n < 2p Q¢ sin( Eqo) tan(r Eqo). (23)

These conditions apply whefiyo € [0, %), corresponding to an initial performanbetter

than random guessing; whei o > % the generalization errdiy(z) is always monotonically
decreasing in time. When the conditions (23) are satisfied (which is always the case for
sufficiently small learning ratg, as long a0 < %) the generalization error has a minimum
atr*. Maximain Eq(r) are also possible; the corresponding conditions are obtained from (23)
by reversing both inequality signs. We reiterate that the above effects can occur only if the
initial performance of the student is better than random guessing. They arise essentially out of
the competition between ‘forgetting’ the initial state, and learning a new weight vector from
the training data (whose performance, giventfes oo by Eg ., may be better or worse than

the initial one). In this sense, they are rather more trivial than more conventional overtraining
effects observed in other systems, which occur only for noisy training sets of finite size; in our
case, a non-monotoni€y(¢) is possible even for noise-free teachers and infinite training sets.

4. Joint field distribution

The calculation of the average of the joint field distribution starting from equation (10) is
more difficult than that of the scalar observables. It is convenient to work in terms of the
characteristic function

P&, 3. 1) = (€@ Ty, oy, (24)
Using equations (8), (10), (11), we then find that
P, 9, T) = lim <% ,, expl—i(fo™Jy - €4 + HB* - e + TTH)]

N
—00 o

_@ S IN=Lep | gn(f)u(l)
x<exp< N Za ghoeror = (25)

=0
Performing the path average gives

s A N tN p - A
<exp< _ WWX ZOIN7Z£M . sﬂ(ﬁ)Tu(f)>> — 1_[ I:l Zexp< _ WWXOJN7KEM . 5UTV>]'

(=0 =0
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After substitution of this result into (25), only a training set average remains. Once this has
been carried out, all terms in the sum opewill be exactly equal. Anticipating this by setting
w =1, we get

B, 5. 7) = [Jiﬂ1m<exp[—i(£afNJo L€+ 5B . €1+ TTY)

A Reo(-Frreer)]), @

Consider now the product = th[io ...]. Thev = 1 term of the sum in square brackets
needs to be treated separately becgtisé’ = N. Forv > 1, on the other hand, the products
¢L. ¢¥ are overlaps betwedtifferentinput vectors and therefore only 6f(+/N); the rescaled
overlapsv, = ¢*- £"/+/N are ofO(1). In the sum over > 1in

log s = Zlog[ exp(—into'™N= £T1)+—Zex <—3—NUN @va”>:|

v>1

the second exponential therefore has an argumet &f1/2) and can be Taylor expanded.
Terms up ta®(1/N) (i.e. up to second order) need to be retained because of the sum over the
O(N) values oft, and so

logS = Zlog[ exp(—ingoN-trly + L2

1 inx n?x?
o . Nty v _ g 2AN=20,2
2 < VN ' 2N !

p v>1

1
= —Zl:exp(—lnxoﬂv ‘rty — Inxathe—ZvaV

1 1
anxzazzzv 2¢ = Z vf]

v>1

where contributions o (N ~%/?) have been discarded. Transforming the first sum birgo
an integral over time (by considering appropriate Riemann sums), we then obtain

222

log$ = y RTY) — M (1 _ gy - TXM2 (4 _ g2y @7)
Y 4y
where
1 t
x(w) =+ / ds {expl_inwe 7] — 1) (28)
o Jo
and

T’ = — Z vy

v>1 v>l
Further progress requires considering the statistics of the random varigbdes u,. For
N — oo, thev, are independent Gaussian variables with zero mean and unit variance. By
the central limit theoremy, therefore has fluctuations 6f(N~%?) and can be replaced by
its averageuy) = 1 in the thermodynamic limit. Similarly, because the produg®’ are
uncorrelated for different, u; becomes Gaussian in this limit. Using (12), its mean and
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variance can be caIcuIated as

<£ CET(€)) = pB* - €'+ O(N ™)

v>l
p—1
a?N
We conclude that, for larg®, u; = pB* - £€* + « Y241, whered is a unit variance Gaussian
random variable with mean zero. We are now in a position to avefagegiven by (27) over
all realizations of (¢", TV), v > 1}, with the result

intoB* - £1 222 242
M(l —erhy — 77_)62(1 —e )2 — H(l — e—2yt):| .
20y 4y

1
((Aup)?) = [(v?) — (v,)?] = - ONY].

(S) = eXp[x()?Tl) -

Inserting this into equation (26) for the characteristic function, we are left with a final average
over¢! andT?, with the former entering only through the fields= J; - ¢ andy! = B* - ¢

B, 3. T) = <exp[—i<£e‘ﬂu iyt e TTY 4 GTY — T g e
222 2202
nx _yi2 X oyt
- l-e’y——@A-€e% . 29
i 2oL >]> (29)

We now observe that* only depends om?, but not oni; correspondinglyy is independent
of 71 if y'is given. For largeV, the two fieldsy andy! are zero mean Gaussian random
variables withiu?) = Qo, (uy!) = Rpand((y')?) = 1. The average of the-dependent factor
in (29), for giveny?, is therefore

(exp(—ite " u)), 1 = expl-ite " Roy' — 322" (Qo — RY)].

Inserting this into (29), and using (16), (20), one finds that the terms in the exponential which
are linear int combine to aterm proportional ®(z), whereas the quadratic termsticonspire

to give a contribution proportional tQ (r) — R?(¢):

P(%,9,T) = (expl-i$y* —iTT* + x GTY) — 13%(Q — R?) — iRZy™) g1 (30)
Finally, we recast this result in terms of the conditional distributiom,afiveny and7. To do

this, first note that the distribution of and7'! that is to be averaged over on the right-hand side
of (30) is just the distribution of the teacher figldind the teacher outpiitover the training set.

We rename them appropriately and write out the definition (24) of the characteristic function
on the left-hand side:

/dxdy > expl-ijy —iTT —i2x] P(x|y, T)P(y, T)

T=+1
/dy Z expl-ify —iTT + xRT) — 32%(Q — R®) — iR&y]P(y, T).
Equality for all § and7 implies that
f dx exp(—i£x) P (x|y, T) = exp[x XT) — 3£%(Q — R?) — iR#%y]
and hence our final resultt
Py, 1) = [ Goexpli — Ry + £ GT) - 850 — R2) (31)

T Equation (31) can also be derived by using Fourier transforms to oBtainy, 7') from (30), and then dividing
by P(y. T).
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which is remarkably simple. In particular, we note that in gasditional distribution ofx,
the noise properties enter only through the parameten fact, they only affect the factor
exp(—ix Ry), while bothQ — R? andy (£ T) are actually independent pf Equation (31) also
shows that the dependence of the student fielg and7 can be written in the simple form

XxX=Ry+A1+TA>

whereA; and A, are random variables which are independent of each other andred 7.
Remarkably, they also do not depend on any properties of the noisy perceptron tesciser:
simply Gaussian with zero mean and variagze- R?, while the distribution ofA, follows
from the characteristic functioexp(—iAA,)) = exp(x (A)). All non-Gaussian features of
the student field distribution are encodedAn. Becausey(-) is inversely proportional to
a, the size of the training set, it is immediately obvious how the student field distribution
recovers its Gaussian form far— oo. More precisely, it can be shown that even for finite
a, non-Gaussian effects in the distribution.ofire negligible whenever « «a. As before,
this corresponds to the condition that training examples have not yet been ‘recycled’ in the
learning process. Similarly, i > 1/y, then the system reaches its asymptotic limit before
it ‘realizes’ that is finite; the distribution ofc is then Gaussian for all times Finally, we
note that in the absence of weight decay=£ 0), the distribution ofA, can be determined
explicitly: A,/n then obeys a Poisson distribution with meda. By comparison with the
explicitlearning rule (11), itis easy to interpret this resultfgr. It represents the ‘anomalous’
contribution to the overlap = J - £&* from the learning steps where the same exangfile
was actually used to updade the number of such learning steps obviously has the required
Poisson distribution. For non-zero weight decay, the distribution pbroadens around the
discrete values 0y, 21, ... because the effect of each update with the same example is more
or less heavily damped by the weight decay depending on when it took place.

Using the fact thay is Gaussian with zero mean and unit variance, the training &kror
and student field probability densify (x) follow from (31) as

Bu= [ @Dy 3 0-xT)P ey TIP(TIy) (32)
T=+1

P = [ Dy 3 Aty TP (33)
T=+1

in which Dy = (2n)"ze 2" dy. We note again that the dependencegfand P, (x) on the
specific noise model—for a given value gf-arises solely througt®? (T'|y). We remind the
reader that this teacher output probability is given by (3),

P(Tly) =@Q—=21)0(Ty) +20(=Ty)
for the case of output noise, while for weight noise (5) implies
P(T|y) = i[1+ Terf(y/v25)].

In the appendix, we give explicit expressions for the training error and student field distribution
in these two cases (see equations (48)—(51)), which also reveal a close relation between them.

5. Comparison with numerical simulations

From the theoretical point of view, equations (31)—(33) constitute the clearest expression of
our results on the joint field distribution since the dependence of the distribution on the given
noise has been separated out in a transparent manner. However, we have found that another
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Figure 2. Student field distributiorP, (x) observed during on-line Hebbian learning with output
noise of strength. = 0.2, at different times (from left to rightt = 1, 2, 3, 4), for training set size
o= % learning rate; = 1, and weight decay = % with initial conditionsQo = 1 andRy = 0.
Histograms: distributions as measured in numerical simulations of &n10 000 system. Solid
lines: predictions of the theory.

equivalent formulation can be useful from the point of view of numerical computations; this
is detailed in the appendix.

It will be clear that there is a large number of parameters that one could vary in order
to generate different simulation experiments with which to test our theory. Here we have
to restrict ourselves to presenting a number of representative results. Figure 2 shows, for
the output noise model, how the probability densfyx) of the student fields = J - ¢
develops in time, starting as a Gaussian distribution=at0 (following random initialization
of the student weight vector) and evolving into a highly non-Gaussian bi-modal one. Figure 3
compares our predictions for the generalization and training efpesd Ey, with the results
of numerical simulations (again for teachers corrupted by output noise) for different initial
conditions,Ego = 0 andEgo = 0.5, and for different choices of the two most important
parameter& (which controls the amount of teacher noise) an@vhich measures the relative
size of the training set). Different choices of the weight degdyave also been explored,
and yield similar results. The system is found to have no persistent memaory of its past (which
will be different for some other learning rules), the asymptotic valueBoénd Ey, being
independent of the initial student vectort.

Figure 4 shows the probability densi#(x) of the student fields = J - £ for the
Gaussian weight noise model, with effective error probahiliychosen identical to the error
probability used to produce the corresponding graphs in figure 2 for output noise. Finally
we show in figure 5 an example of a comparison between the error measures corresponding
to teachers corrupted by output noise and teachers corrupted by Gaussian weight noise, both
with identical effective output noise probabilityy = 0.2. Here our theory predicts both

t In the examples showikg is always larger thaiky,. However, this is not true generally: We are measuring the
generalization erroEg with respect to theleanteacher, whereas the (training) examples that determine the training
error Ey arenoisy. Thus, under certain circumstancés,can be larger thaiy. A trivial example is the case of an
infinite training set¢ — oo) without weight decay) = 0). From (17),E4 then tends to zero for long timeswhile

the training error will approach; = Area, Which is non-zero for a noisy teacher. A generalization error relative to the
noisy teacher can also be defined in our problem; itturns outBypeisy) = {1—(z(y) erf(yR[2(Q—R?)]~Y2))}/2.
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Figure 3. Generalization errors (diamonds/curves) and training errors (circles/curves) as observed
during on-line Hebbian learning from a teacher corrupted by output noise, as functions of time.
Upper two graphs: noise level= 0.2 and training set size € {0.5, 4.0} (initial conditions: upper

left, Ego = 0.5; upper right: Eq o = 0). Lower two graphsx = 1 andx e {0.0, 0.25} (lower

left, Eqo = 0.5; lower right, Eqo = 0). Markers: simulation results for as = 5000 system.

Solid curves: predictions of the theory. In all caghs= 1, learning rate) = 1 and weight decay

y =0.5.

noise types to exhibit identical generalization errors and almost identical training errors (with
adifference of the order of 10, see the appendix) at any time. These predictions are borne out
by the corresponding numerical simulations (carried out with networks of\size10 000).
We conclude from these figures that in all cases investigated the theoretical results give an
extremely satisfactory account of the numerical simulations, with finite size effects being
unimportant for the system sizes considered.

As pointed out in the theoretical analysis at the end of section 3, there are no genuine
overfitting effects in Hebbian learning with constant learning sat&ny minima or maximain
Eq(r) are due to the competition between forgetting a better-than-random initial generalization
performance and learning a new set of weights with a different performance from the training
data. We have run a number of simulations to address this point, and found our theoretical
prediction confirmed. For time-dependent learning rates, on the other hand, preliminary
theoretical work indicates that genuine overfitting effects can occur quite generically.
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Figure 4. Student field distributior®?; (x) observed during on-line Hebbian learning with Gaussian
weight noise of effective error probability = 0.2 (cf equation (18)), at different times (from left
toright: r = 1, 2, 3, 4), for training set size = % learning rate; = 1, and weight decay = %

with initial conditionsQp = 1 andRp = 0. Histograms: distributions as measured in numerical
simulations of anV = 10000 system. Solid curves: predictions of the theory. See the appendix
for further discussion of the close similarities with figure 2.
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Figure 5. Comparison between output noise and Gaussian weight noise, with parameters such
that both cases have identical effective error probability= 0.2. Open diamonds (output noise)

and filled diamonds (weight noise): generalization errors as observed in numerical simulations,
as functions of time. Open circles (output noise) and filled circles (weight noise): training errors
as observed in numerical simulations, as functions of time. In all cases training set=sife5,
learning rate; = 1, weight decay = 0.5, initial conditionsQo = 1 andEg o = 0.5, and system
size N = 10000. Solid curves: theory (which here predicts identical generalization errors and
virtually identical training errors).

6. Conclusion

Starting from a microscopic description of Hebbian on-line learning in perceptrons with
restricted training sets, of size= o N whereN is the number of inputs, we have developed
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an exact theory in terms of macroscopic observables which has enabled us to predict the
generalization error and the training error, as well as the probability density of the student local
fields, in the thermodynamic limi¥ — oo. Our results are found to be in excellent agreement
with numerical simulations, as carried out for systems of 8ize- 5000 andV = 10 000,
and for various choices of the model parameters, both for teachers corrupted by output noise
and for teachers corrupted by Gaussian input noise. Generalizations of our calculations to
scenarios involving, for instance, time-dependent learning rates or time-dependent decay rates
are straightforward. Closer analysis of the results for these cases, and for more complicated
teachers such as noisy ‘reversed wedges’, may be an issue for future work.

Although it will be clear that our present calculations cannot be extended to non-Hebbian
rules, since they ultimately rely on our ability to write down the microscopic weight vector
J at any time in explicit form (11), they do indeed provide a significant yardstick against
which more sophisticated and more general theories can be tested. In particular, they have
already played a valuable role in assessing the conditions under which a recent general theory
of learning with restricted training sets, based on a dynamical version of the replica formalism,
is exact [10, 11].
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Appendix. Evaluation of the field distribution and training error

In this appendix, we give alternative forms of our main results (31)—(33) for the joint field
distribution and training error that are more suitable for numerical work. For this purpose,
it is useful to shift attention from the noisy teacher outputo the corrupted teacher field

that produces it; the two are linked By = sgn(z). This is entirely natural in the case of
Gaussian weight noise. As discussed after equatiory (hen differs from the clean teacher
field y by an independent zero mean Gaussian variable with variaAcexplicitly, one has

the conditional distribution

1 . . . .
P(zly) = ————e /2% (Gaussian weight noise).

N 2m %2

The case of output noise can be treated similarly, by assuming tisatientical toy with
probability 1— A, but has the opposite sign with probability

P(zly) = (1= 21)d(z — y) +18(z + y) (output noise). (34)

We now consider the joint distributioR (x, y, z). It can be derived by complete analogy with
the calculation in section 4. For the conditional distributiorr pbne finds that

Pi(x|y,z) = P (x|y, sgnz)).

Intuitively, this follows from the fact that during learning, the student only ever sees the noisy
teacher output sdn), but not the corrupted field itself; the student field: can therefore
depend ory only through sgrx). Multiplying by the joint distribution ofy andz, and using

the result (31), one thus finds, for the case of output noise,

1,2
e 2) dx 122 2 pin N
P(x,y,2) =[(L—2)8(z — y) +18(z + —/—e*zx (Q=RHHT(r—yRy+x (F5gn(2))
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with the marginal distribution

1.2 A
€ 22z /g_xe—%)ez(g—k2>+ifx+x(£ sgr(z))[(l_ A)e—iizR +)Lei)?zR]' (35)
T JT

N

The corresponding expressions in the case of Gaussian weight noise read

Pi(x,z) =

P(x,y,2) = 1 d_xef%.%2(Q7R2>+i£<foy>+xo?sgrtz))7[z272yz+y2<1+22>1/<222)
o 2nx ] 2n
and
- 327/ (A+%?) ¢
P(x,2) = € di g 1710~ R?/(A+EA)HE[x— Re/ (1457 x (¥sgn2)) (36)

Jord+x2) ) 21

In both cases, the training error and the probability distribution of the studentfaaid then
determined by

Ey :/dxdz@(—xz)Pt(X,Z) P (x) Z/dz Pi(x, 2)

respectively. For a numerical computation of these two quantities, it is imperative to further
reduce the number of integrations analytically, which turns out to be possible. In the following,
we drop the time subscripton all distributions to save notation.

First we deal with the case of output noise. In the marginal distribution (35), we make the
change of variablé = k sgn(z) to get

1.2
e 2¢ dk 1,2 2 ; f i
P(x, Z) — e—Ek (O—R )+X(k)+|kxsgr(z){(l _ )\‘)e—lk|Z|R +)\.e|k|Z‘R}.
V27 / 2n
The training error is

Ey = /dx dz P(x, 2)0(—xz2) = / dx [Pi(—x) + P_(x)]
0

where
1 dk — 1k2(Q—R?)+x (k)xik —ik|z|R ik|z|R
Pi(x) =/dzP(x,z)6(:|:z)= E/Z_Dze 2 X (A — r)e R 4 @izl
T
(37)

We see thaP,(x) = P_(—x) = I1(x). In terms of[1(x) we have the formulae

P(x) =TII(x) +I1(—x) Ey = 2/ dx IT(—x). (38)

0

The functionl1(x) can be further simplified by decomposiggnto its real (¢, = Re(x)) and
imaginary ; = Im (x)) parts:

M(x) = / j—kDZe %kZ(Q—R2)+X(k)+ikx{(1_ A)e—iklz\R +Aeik\z|R}
4

- / %DZ e HQRI 0 (1 — 3) cosfy; (k) +k(x — RIz])]

+2 cosfyi (k) + k(x + R|z))]}
- / j—i e 221 ® cosy; (k) + kx] + (1 — 24) sin[x; (k) + kx] G(kR)}
(39)

in which

1,2 A 131
A) =e?® | Dzsin(Alz]) = —1F1 [ =; =; =A? 40
G(A) 2 / z SIN(A|z]) ﬁl 1(2, 25 ) (40)
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and; F1(...) is the degenerate hypergeometric function (see [13], p 1058). From equation (38)
we now immediately obtain our final result for the student field distribution:

dk
P(x) = / 5-€ 0 coskn)(cosh ()] + (1 20 G(R) sinD ()]). (42)
To further simplify the expression (38) for the training error, we write
0
Ey = lim 2/ dx IT(x) =2 lim I(L)
L—o0 _L L—o0
where, from (39)

- [ o K 1o
A

0
x{/ dx cos[xi(k) +kx]+ (1 — 2A)G(kR)/ dx sin[; (k) +kx]}.
L —L
Thus
I(00) = / el 20 ® (1 — 20)G (kR) cosfi (k)] — sinxi(k)])
dk 1 2
; OK 10K () (g .
+ lim /4ﬂke SNk L — xi(k)]

+(1 — 20)G (kR) coskL — xi(k)]}. (42)

TheL-dependentintegral in (42) can be expressed as a sum of two integrals, which we consider
separately. In the first part, we replacey k/L and obtain

. dk .

L—o0
dk ) 1
=i 20k/L)?+x:(k/L) e
- Llinoo/ el sinfk — xi(k/L)] = / sin(k) = 7
Secondly, we need to consider the behaviour of
dk
/ Z Qk2+)(r(k) COSV{L Xi (k)]G(kR) (43)
rrk

in the limit L — oo. We set« = kR and note that, becauge > R2, one hase:2¥* < e~2¢’;

furthermore,
sin 2
le 2 Guu | = ‘/Dzlzl (Juz) </Dz|z| =,/ =
luz| T

Finally, x (k) is independent of. and is bounded as a function &f in fact, from (28),

|x (k)| < 2a~1t. It follows by an application of the Riemann—Lebesgue lemma (see e.g. [14])
that the integral (43) tends to zero s~ oco. We conclude that for output noise the training
error is given by

Ey = % - / ;—ke_%Q"z*“’”{(l— 2))G (kR) cosfyi (k)] — sin[xi(k)]} (44)
Tk

whereG(...) is defined by (40).
The procedure for Gaussian weight noise is similar to that of output noise. We start from
equation (36) and define

R=R/V1+3%2.
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Figure Al. Characteristic example of theoretical predictions for the training éffdor two noisy
teachers with identical effective error probabilitys = 0.2. Dashed curve: output noise; solid
curve: Gaussian weight noise. Parameters: y = 0.5, Qo =n =1, Ego = 0.5.

Upon definingt = k sgnz) in (36), replacing: by z/+/1 + X2, and continuing in the same
notation as for output noise, we find

1 [ dk ; e ik B
Po(x) = E/ZDZ e—%kZ(Q—R2)+X(k):l:lkx—lkR\zl. (45)

Since (45) can be obtained from (37) by putting> 0 andR — R, we immediately obtain for
the student field distribution and the training error, respectively (see equations (41) and (44)),

P(x) = / g—ﬁe_%g"“’“") costkx){cosyi (k)] + G (kR) sin[x (k)]} (46)

Bu=- / o108 (G kR cosl(b)] — sinf ()) (47)
2 2rk

In particular, we can now calculate the student field distribution and the training error for both

output noise and Gaussian weight noise, with noise levels such that in bothggasesh.

This guarantees that, at any tim@, R and E4 will have the same values in both cases; it also

implieskR = R/+/1+ %2 = R(1—21). We then obtain from (41), (44), (46), (47) very similar

expressions:

PO(x) = / S—,’ie‘%m cogtkx){cosfi (k)] + (1 — 24)G (kR) sin[x (k)]} (48)
P9(x) = / S—ie‘%w costkx){cos[xi (k)] + G[(1 — 21)kR] sin[xi(k)]} (49)
and

out _ L dk 1 ouzeg ) i
B =5~ [ gepe OO~ 20G(R) cosl (0] - sinb (k) (50)
Ey' = % - / %e’%‘”““‘){G[u — 20)kR] cosli (k)] — sinfxi (k)]}. (51)

Provided parameters are chosen such that the effective error probabilities are identical, the
differences between output noise and Gaussian weight noise are restricted to the positioning
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of the factor 1— 2 relative to the integraf; (. . .), with manifestly identical expressions for
A=0andxr = % (as it should be). As a result the resulting curves for field distributions and
training errors are found to be almost identical; figure A1 shows a typical example.
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